Application Guidelines for Special Selection for Doctoral Program for International Students
Graduate School of Science and Engineering
Ehime University
Academic Year 2019 (September Entrance)

1. Number of seats available

<table>
<thead>
<tr>
<th>School of Engineering</th>
<th>Major</th>
<th>Course</th>
<th>Field</th>
<th>Seats</th>
</tr>
</thead>
</table>
| Engineering for Production and Environment | Mechanical Engineering | • Mechanical Systems
• Energy Conversion Engineering
• Production Systems and Materials for Machinery | A few |
| Civil and Environmental Engineering | | • Infrastructure Technology and Design
• Urban Planning and Watershed Environment
• Coastal and Marine Environmental Engineering | |
| Materials Science and Biotechnology | Materials Science and Engineering | • Applied Chemical Physics
• Materials Development and Engineering | A few |
| | Applied Chemistry | • Organic and Macromolecular Chemistry
• Physical and Inorganic Chemistry
• Biotechnology and Chemical Engineering | |
| Electrical and Electronic Engineering and Computer Science | Electrical and Electronic Engineering | • Electrical Energy Engineering
• Electronic Materials and Devices Engineering
• Communication Systems Engineering | A few |
| | Computer Science | • Computer Systems
• Artificial Intelligence
• Applied Computer Science | |
| School of Science | Mathematical Sciences | • Mathematical Sciences | A few |
| Chemistry and Biology | Earth’s Evolution and Environment | • Earth’s Evolution and Environment | A few |
| | Molecular Science | • Functional Material Science
• Life Material Science | A few |
| | Biology and Environmental Science | • Sciences of Biological Functions
• Ecology and Environmental Sciences | A few |
2. Application Eligibility

An applicant to this program must be a non-Japanese national residing overseas; who is eligible for the permission to stay in Japan as a student under the state regulations of immigration and refugee control, and at the same time, is a graduate of or should be expecting to graduate from a college or university that has an official academic exchange agreement with Ehime University or has collaborative research program/s with the faculty member/s of this Graduate School; and must meet one of the following requirements.

(1) An applicant must have received, or be expected to receive at the time of the admission in September 2019, a Master's degree (or equivalent) outside Japan.

(2) An applicant must be recognized by the Graduate School of Science and Engineering of Ehime University through an individual eligibility screening as having academic ability equivalent or superior to that of those who have completed a Master's program, and must be at least 24 years of age at the time of admission.

(Pre-application Eligibility Assessment for Requirement (2) above)

1) Application Eligibility

An applicant to this program must be 24 years or older at the time of admission, and must have a research record or achievement as assessed by an Evaluation Committee in terms of published book/s, research papers (international/domestic journal/s or equivalent publication/s), a record of academic presentations and lectures, research reports, patent/s, etc. with greater weight than master’s degree research.

2) Documents to be Submitted for Pre-application Eligibility Assessment

A) Pre-application Eligibility Assessment Form (specified format)
B) Research Activity Record/Achievement Form (specified format)
C) Graduation Certificate obtained from the last attended educational institute
D) Other reference materials (such as Research Paper/s, Patent Certificate/s, etc.)

3) Submission Deadline: 9 October 2018 (Tue)

To be submitted only after adequate discussion prior to application regarding intention to apply for the program and related issues with the Program Chief of applicant’s field of interest.

(Must be received through EMS by this deadline)

4) To be Submitted/Sent to:

Education Support Division (Engineering Team)
Ehime University
3, Bunkyo-cho, Matsuyama, 790-8577
JAPAN

5) Admission Eligibility Assessment

Based on the submitted application documents, an assessment of admission eligibility will be made, and the applicant/s will be notified of result/s by 2 November 2018 (Fri). Please note any submitted documents for this purpose will not be returned or used outside of eligibility status, so if you are notified that you are eligible for application, you will need to re-submit any repeated papers/documents (listed in point No. 5 of this guidelines) while submitting your application for admission. Moreover, the application eligibility assessment result will only be valid for application to the 2019 Application Guidelines for Special Selection for Doctoral Program for International Students.
3. Application Period and Selection Test

Application period: 9 (Fri) – 16 (Fri) November 2018
Must be received through EMS within this period.

Submission of application documents:
Education Support Division (Engineering Team)
Ehime University
3, Bunkyo-cho, Matsuyama, 790-8577
JAPAN

(Further inquiry/ies in relation with the application procedure and document submission may be made at kougakum@stu.ehime-u.ac.jp. Please send emails in English or Japanese only.)

Selection test date: Will be conducted by 12 December 2018 (Wed)
Result notification: 25 December 2018 (Tue)
(A ‘Letter of Notification’ will be sent to successful candidates. Telephone or Email inquiries are not permitted.)

Potential applicants to this program are supposed/required to communicate with the Program Chief in their field of interest and express their interest in applying by 1 November 2018 (Thu). The email addresses for this purpose are:

<table>
<thead>
<tr>
<th>Program Chief</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering for Production and Environment</td>
<td>nakahara.masaya.mf@ehime-u.ac.jp</td>
</tr>
<tr>
<td>Materials Science and Biotechnology</td>
<td>aono.hiromichi.mf@ehime-u.ac.jp</td>
</tr>
<tr>
<td>Electrical and Electronic Engineering and Computer Science</td>
<td>ninomiya.takashi.mk@ehime-u.ac.jp</td>
</tr>
<tr>
<td>Mathematics, Physics, and Earth Sciences</td>
<td>tsubamoto.takehisa.yt@ehime-u.ac.jp</td>
</tr>
<tr>
<td>Chemistry and Biology</td>
<td>inoue.masahiro.mg@ehime-u.ac.jp</td>
</tr>
</tbody>
</table>

4. Selection Criteria

1) Method
Selection for admission to this program will be made on the basis of integrated evaluation of submitted documents and performance in the interview (internet-based interview).

2) Interview question content (including the oral test)
The interview questions will be based on the master’s degree thesis research, research activities and achievements, doctoral research plan, etc.

5. Application Material and Documents to be Included
A. Completed application form including the Entrance Test Admission Card and Personal Identification Card with a photograph (provided with the application material; Form#1)
 (The photograph should be 30-mm wide and 40-mm high (30mmx40mm) showing the torso and face of the applicant. The applicant should be facing forward and not wearing a cap/hat. The photo should have been taken no more than 3 months prior to the date of application).
B. Officially sealed copies of Grade Sheets or Transcripts of Bachelor’s Degree course issued
by the graduating university or college
C. Graduation Certificate obtained from the last-attended educational institution
D. Officially sealed copies of Grade Sheets or Transcripts of Master’s Degree issued by the graduating university or college
E. A copy of Master’s Degree Certificate or Certificate of expected date of graduation issued by the graduating university or college
F. Officially sealed Letter of Recommendation from the Dean/Principal/Campus Chief or a high-ranking official of the graduated/graduating university or college (provided with the application material; Form#2)
G. A written pledge indicating the possibility of arriving in Japan on or before 22 September 2019 (Sun) if selected (provided with the application material; Form#3)
H. Research Plan or Proposal on the specified paper (provided with the application material; Form#4)
 (Regarding the research topic or field, research concept, objectives and methodology, an applicant must discuss in advance with their expected research supervisor)
I. Summaries of Master’s thesis (outline) and published research papers and related achievements
 The summary of the Master’s thesis or any equivalent research material should be about 2,000 letters in Japanese or about 500 words in English. Additionally, if you have similar research content in printed/published form, have a technical report, and possess any patents or innovative plans, please include a brief summary of each with the application material. Also, as far as possible, please include a copy of each published research paper.
J. A copy of applicant’s passport details (front page personal details); if unavailable at the time of application, it must be submitted at the time of entrance examination
K. Application Processing Fee
 The application processing fee is 30,000 yen. If paying by remittance from an overseas bank or financial institution, you must confirm that the amount to be transferred (remitted) to us is 30,000 yen exactly; an equivalent amount in another currency will not be accepted. You may ask the bank or financial institution to make the payment in Japanese currency so that they do not deduct their handling charges and the service charges at paying bank in Japan from the amount of application processing fee at the time of making the bank transfer (remittance). Please include the bank transfer slip (payment application form) with the application material.

1) Amount to be remitted: 30,000 yen (exact amount payable only in yen)
 (The remitter (applicant) is responsible for the remittance charge. A fee of 1,500 yen charged by the financial institution listed below is to be paid at the time of remittance. The remittance processing fee charged by the financial institution below will not be deducted twice (i.e. 1,500 yen is only deducted once))

2) Bank account details for transferring the application processing fee
 Bank Name: THE IYO BANK LTD.
 Bank Code: 0174
 Swift Code: IYOBJPJ
 Branch Name: ICHIMAN BRANCH
 Branch Code: 109
 Branch Address: 2-20-1 KATSUYAMA-CHO, MATSUYAMA 790-0878, EHIME, JAPAN
Account Number: 1799161
Account Holder’s Name: NATIONAL UNIVERSITY CORPORATION EHIME UNIVERSITY
10-13 DOGO-HIMATA, MATSUYAMA 790-8577, EHIME, JAPAN

3) Period of payment: From 29 (Mon) October to 5 (Mon) November 2018,

4) Remittance method: TELEGRAPHIC REMITTANCE
5) Paying bank charges: To be paid by the sender (applicant)
6) Additional information: When sending a remittance, write university entrance examination fee as the purpose of the remittance, and your full name as well as the name of the graduate course under message.

Note: If the application processing fee is insufficient (i.e. less than 30,000 yen), your application documents will be regarded as incomplete and your applicant material will be rejected. In such a case, the remitted application processing fee will be returned, but any charges payable to the bank in Japan as well as the applicant’s side will have to be borne by the applicant himself/herself. However, the application processing fee will not be returned in any other cases except for the conditions listed under Point#6 of this Application Guideline.

6. Return of the Application Processing Fee
The paid or remitted amount of Application Processing Fee will be returned in the following case/s only (Note: any charges payable to the bank in our side as well as the applicant’s side will have to be borne by the applicant himself/herself.).

1) The Application Processing Fee was paid, but application papers were not sent/submitted
2) Mistakenly paid the Application Processing Fee two or more times, or paid an amount greater than the required amount of 30,000 yen
3) Sent/submitted the application documents, but the application was rejected

(Requesting for the return of the Application Processing Fee)
In cases of condition 1) or 2) above, please contact us at the address below. We will send you a ‘Request for Return of the Application Processing Fee’ form, which you must fill out and send back to us by post. In case of condition 3), however, we will send you the ‘Request for Return of the Application Processing Fee’ form along with your application documents, which you must fill out and send back to us by post.

Communication Address:
The External Payment Affairs Team
Financial Planning Division
Finance Department, Ehime University
10-13 Dogo-Himata, Matsuyama 790-8577, Ehime, JAPAN
E-mail : suitou@stu.ehime-u.ac.jp
7. **Application Method**
The application forms and necessary information may be downloaded from the Ehime University website (https://www.ehime-u.ac.jp/english/). To apply for this program, all applicants must send completed application forms and necessary documents to us by post/mail.

8. **Admission Formalities and Period**
(1) The following are necessary at the time of admission.
 1) Admission Fee of **282,000 yen**
 2) Graduate school-specified admission forms/papers
 3) **8,000 yen to 10,000 yen** as miscellaneous charges/fees

(2) **Admission Period**
Admission will take place on **24 September 2019** (Tue). The details will be sent to successful candidates at a later date.

(3) **Tuition Fee**
A tuition fee of **267,900 yen** for the first semester and an equal amount for the second semester (Annual tuition fee: **535,800 yen** must be paid after the admission/enrollment. The admission fee and tuition fee may be revised (in most cases increased) at the time of admission or even after/during enrollment, which will be applicable from the date of revision. Successful candidates will be separately notified of the period for tuition fee payment.

9. **Privacy Policy** (Use of personal information)
Any personal information provided in application forms such as names and addresses is solely for processing applications, contacting applicants if an application document is incomplete, conducting entrance examination, notifying successful applicants, and sending admission procedure documents. If an application document is incomplete, Ehime University may notify the applicant’s guardians or school to request the document be promptly amended and resubmitted. It is also used for academic affairs after enrollment (student registration, educational guidance), student support services (health-care management, scholarship applications), tuition administration, and to conduct surveys and research (improve entrance examinations, study and analyze application trends). The personal information will not be used for any other purpose and will not be provided to third parties.

10. **Important Note**
After receiving the application documents, no changes will be allowed in the application information or submitted under any conditions. The documents and application forms cannot be returned. The submitted application documents must be complete, accurate, and authentic. Incomplete, inaccurate, or unauthentic application documents may result in denial of admission.
11. Outline and staffs

Engineering for Production and Environment

<table>
<thead>
<tr>
<th>Course</th>
<th>Field</th>
<th>Research outline</th>
<th>Staffs and Research Fields</th>
</tr>
</thead>
</table>
| Mechanical Engineering | Mechanical Systems | This division consists of three education and research fields: dynamics of machinery, control engineering, and robotics. The major subjects of our research area contain the followings: dynamics of solids and structures, intelligent control, ergonomics, mechatronics, and intelligent systems. | ❖❖ Yutaka Arimitsu: Micromechanics in solids and its applications to material science
Satoru Shibata: Control systems of intelligent machines for coexisting with Humans
Tonomori Yamamoto: Robotics, Mechatronics, Human-machine interface, Welfare Engineering
Shingo Okamoto: Robotics Dynamics, Vibration and Control, Computational Mechanics
JaeHoon Lee: Robotics, mechatronics and intelligent sensing |
| Energy Conversion Engineering | Energy Conversion Engineering | This division consists of four education and research groups: thermal engineering, fluids engineering, heat and mass transfer engineering, and mathematical engineering. The staff members engage in instruction and research on thermal engineering, aerothermodynamics, fluids engineering, rheology, sustainable energy, zero emission process, partial differential equations, and numerical analysis. | Masaya Nakahara: Smart control of combustion for hydrogen and hydrocarbon Energy
Kazuo Matsuura: Turbulence simulation of thermo-fluid flows, hydrogen safety simulation
Kazunori Yasuda: Non-Newtonian fluid mechanics and its application
Yukiharu Iwamoto: Fluid transport and its application to engineering
Shinfuku Nomura: Plasma process and sono-process
Shinobu Mukasa: Electric discharges in a high-density medium and heat and mass transfer phenomena |
| Production Systems and Materials for Machinery | Production Systems and Materials for Machinery | This division is composed of several research groups of material engineering, mechanics of materials, production processing and innovate materials processing etc. The object of this division is to conduct academic research on various problems concerning solid-state physics and strength evaluation of advanced materials, creation of new materials, innovative materials processing, advanced plastic forming of metals, and fabrication and machining of CFRPs. | Manabu Takahashi: Strength and damage evaluation of advanced structural materials
Masafumi Matsushita: Materials synthesis through extreme condition
Hiromichi Toyota: High-rate material synthesis using in-liquid plasma
Xia Zhu: Material and structural design through special processing Technology
Keiji Ogi: Mechanical modeling and strength reliability of composite materials, Processing and machining of CFRPs. |

❖❖ Scheduled to retire in March, 2021
<table>
<thead>
<tr>
<th>Course</th>
<th>Field</th>
<th>Research outline</th>
<th>Staffs and Research Fields</th>
</tr>
</thead>
</table>
| Civil and Environmental Engineering | Infrastructure Technology and Design | In this field, the research work and course curriculum include a large variety of topics related to construction materials, design and construction methods, and seismic behaviors of infrastructures such as bridges, dams, roads, underground facilities, etc. | Kazuyuki Nakahata
Large scale numerical computing of elastodynamic wave, and electromagnetic have for nondestructive evaluation of structural components, Health monitoring with wireless sensor manufactured by MEMS technique
※※※Shinichiro Mori
Seismic responses of structures in the aspect of structural/geotechnical earthquake engineering. Research topics are categorized as follows; nonlinear dynamic soil-structure interaction, liquefaction effects on pile foundations, analysis and modeling of strong ground motion, earthquake damage investigation, and their applications for disaster mitigation.
Isao Ujike
Studies on mass transport properties of concrete and at cracking and on time-dependent behavior of deformation and cracking in reinforced concrete member.
Netra Prakash Bhandary
Landslides and creeping displacement mechanism, Development of landslide preventive techniques, and GIS for landslide, slope instability, and earthquake hazard assessments.
Mitsu Okamura
Seismic stability of foundations and earth structures as well as development of countermeasure technique and design methodology.
Hideaki Yasuhara
Mechanical and hydraulic behavior of fractured rock masses under coupled thermo-hydro-mechano-chemo fields |
Urban Planning and Management

Towards building a highly convenient urban environment of the 21st century, the research work in this field of study includes a variety of topics related to urban life, industrial environment, disaster management, traffic / transportation systems, operations and maintenance.

- Toshio Yoshii
 - Urban transportation systems, Traffic management strategies, Measures for improving traffic safety, Dynamic traffic simulation
- Tohru Futagami
 - Urban disaster preventive planning under a great earthquake and development of urban information system
- Shinya Kurauchi
 - Analysis and modeling on travel decision-making processes, Travel demand forecasting and evaluation of transport policies
- Nobuhiko Matsumura
 - Regional resource management, Social network analysis
- Tsuyoshi Hatori
 - Consensus formation around a public project, Social dilemmas, Regional governance
- Pang-jo Chun
 - Infrastructure inspection, Infrastructure management

Watershed and Coastal Environmental Engineering

Scientific researches in the fields of river, watershed, and coastal environment are indispensable for the sustainable development of infrastructures. Interdisciplinary educational programs and researches from physical, chemical, and ecological aspects, are provided for a better understanding and elucidation of the natural environment in river, urban/natural watershed, and coastal/nearshore areas as well as for exploring solutions against natural disasters.

- Hirofumi Hinata
 - Development of tsunami disaster mitigation technique based on oceanographic reader and numerical simulation. Research on marine pollution caused by plastics in terms of physical oceanography.
- Kunimitsu Inouchi
 - Various studies are carried out on the preservation of groundwater environment in the coastal area based on field observations and numerical simulations.
- Ryo Moriwaki
 - Urban climate formation process, Water circulation in the basin, Utilization technology of renewable energy.
- Akihiro Kadota
 - Turbulent flow structure in rivers and flow visualization
- Kozo Watanabe
 - DNA taxonomy for biodiversity evaluation, Evaluation of genetic diversity of aquatic organisms, Application of DNA-based analysis in river management
- Yo Miyake

※Scheduled to retire in March, 2020 ※※※Scheduled to retire in March, 2022
Materials Science and Biotechnology

<table>
<thead>
<tr>
<th>Course</th>
<th>Field</th>
<th>Research outline</th>
<th>Staffs and Research Fields</th>
</tr>
</thead>
</table>
| Materials Science and Engineering | Applied Chemical Physics | This educational and research field consists of 5 subjects: The “Quantum Materials Group” studies semiconductors, magnetic materials and ceramics, nano materials; the “Solid State Physics Group” studies condensed matter physics with an atomic scale; the “Materials Control Engineering Group” studies the fine structures closely related to material properties and its control through an atomic scale; the “Electronic and Electronic Materials Group” studies electrical and electronic properties of dielectric materials and conductive polymers; the “Materials Processing Engineering” studies the processing, the properties and the structure of glasses and ceramics for new functionality. | ※※Toshiro Tanaka
Research on the magnetic and transport properties of Ceramics, and development of the new advanced ceramics.
※Masaharu Fujii
Development of new organic semiconductor device, application on biomaterials, and analysis of dielectric phenomena and electrical breakdown.
Hiromichi Takebe
Research on processing, properties and structure of new photonic glasses and ceramics.
Koichi Hiraoka
Solid state physics of magnetic materials (such as transition-metal compounds and rare-earth compounds) and strongly correlated electron systems.
Sengo Kobayashi
Researches on phase transformation in various materials such as biomaterials and structural materials and on microstructures at/around interface in composite materials.
Saeki Yamamuro
Size-and shape-controlled synthesis of nanoparticles and their functionalities.
Akira Saitoh
Present research areas covering characterization and structure of transparent amorphous materials. |
| Materials Development and Engineering | Environment and Energy Materials Group | The “Environment and Energy Materials Group” studies the preparation of new functional nano particulates, composite materials, porous materials, etc. used for medical treatments, fuel cells, chemical sensors, catalysts, radioactive Cs decontamination, etc. The “Medical and Biomaterials Engineering Group” studies the development of biocompatible ceramics and magnetic materials. The “Materials Evaluation Group” develops strategies to improve the weldability and mechanical properties of engineering metallic materials. | Hiromichi Aono
Studies of materials such as nano-sized particles, poly-metallic oxides, porous materials for application of medical care, fuel cell, chemical sensor, catalyst, and decontamination
Yoshiteru Itagaki
Development of solid oxide catalysts and their application for chemical sensors and solid oxide fuel cells
Takashi Mizuguchi
Development of thermo-mechanical and alloying techniques for improvement of mechanical properties of structural metal materials. |

※Scheduled to retire in March, 2020
※※Scheduled to retire in March, 2021
<table>
<thead>
<tr>
<th>Course</th>
<th>Field</th>
<th>Research outline</th>
<th>Staffs and Research Fields</th>
</tr>
</thead>
</table>
| Applied Chemistry | Organic and Macromolecular Chemistry | The Organic and Macromolecular Chemistry field is trying to contribute to the progress of the modern society by devising novel processes for material synthesis and creating new functional materials, based on the profound understanding and precise control of a variety of chemical reactions. Research groups in this field are attempting to newly develop such objectives as methodologies for organic and polymer synthesis, heteroatom- and transition-metal-catalyzed reactions, environmental friendly chemical processes, redox-active organic molecular materials, organic (super) conductors and materials derived from their multi-functionalization, and functional materials based on organic polymers. | Eiji Ihara
Development of new method for polymer synthesis
Minoru Hayashi
Development of new synthetic methodologies using heteroatoms and transition metals
Yohji Misaki
Development of organic molecular materials utilizing redox systems
Takashi Shirahata
Development of new organic conductors and multi-functional materials |
| | Physical and Inorganic Chemistry | The Physical and Inorganic Chemistry field is focusing to functional solid materials having nano and mesostructures of inorganic and organic compounds, polymer, and their hybrid systems from the viewpoints of their fundamental physiochemical properties as well as their applications to catalysts, sensors, electronic devices, and so on. The subjects include the synthesis of mesoporous materials and the applications to catalysts and gas sensors, photoelectron spectroscopy of nanocarbons and organic-inorganic hybrid materials, development of polymer-based chemical sensors, preparation of noble organic nanoparticles and their applications, and liquid extraction techniques of rare earth elements. | Masanobu Matsuguchi
Design of functional polymers and its application to a chemical sensor
Tsuyoshi Asahi
Laser fabrication and spectroscopy of noble organic nano-materials
Hidenori Yahiro
Syntheses and applications of meso and microporous materials
Hiroshi Yamashita
Study on separation technology of rare metals
Syuhei Yamaguchi
Development of environment-friendly catalysts with transition metal complexes |
<table>
<thead>
<tr>
<th>Biotechnology and Chemical Engineering</th>
<th>There are research groups focusing on structure function relationships in biomolecules such as proteins and nucleic acids, methods for separation and wastewater treatment, plant biotechnology, protein engineering, and applications of protein production methods to synthetic biology and medicine.</th>
</tr>
</thead>
</table>
| | Tatsuya Sawasaki
Functional proteomics using wheat cell-free system
Kazuyuki Takai
Reconstitution of protein synthesis
Takafumi Tsuboi
Malaria vaccine development
Hiroyuki Hori
Structures and functions of nucleic acids and proteins related to expression of genetic information
Kenji Kawasaki
Wastewater treatment, excess sludge disposal and solid liquid separation
Hiroyuki Takeda
Technological development for antibody therapeutics |
Electrical and Electronic Engineering

Research outline

Research activities cover the development of plasma electronics, plasma diagnostics and plasma medicine, studies on high field conduction and breakdown in dielectrics, mathematical analysis of chaotic dynamical systems, and liquid crystal applications, soft matter science and numerical simulation of electromagnetics.

Staffs and Research Fields

- **Masafumi Jinno**

- **Hideki Motomura**
 - Generation and control of plasmas and their diagnostics for industrial applications

- **Kazunori Kadowaki**
 - Degradation diagnosis of electrical insulation materials and application of streamer discharges for control of air and water pollution

- **Ryotaro Ozaki**
 - Research on optical properties of nano-structured liquid crystals or polymers. Numerical simulation of light propagation in nano-structured materials

- **Tomoki Inoue**
 - Ergodic theory on dynamical systems with chaos, Mathematical foundations towards application of chaos and fractals

Electronic Materials and Devices Engineering

Research outline

Research activities cover the development of crystal growth, optical characterization and application of compound semiconductors, preparation of rare earth activated phosphor materials, and fabrication of semiconductor nano-structures.

Staffs and Research Fields

- **Sho Shirakata**
 - Preparation and characterization of thin film compound solar cells, and crystal growth and characterization of GaN, GaInNAs and ZnO semiconductor. Optical properties and device applications of III-V semiconductors doped with transition-metal and rare-earth impurities.

- **Tomoaki Terasako**
 - Growth and characterization of metal oxide films and nanostructures for opto-electronic devices.

- **Satoshi Shimomura**
 - Fabrication of semiconductor nano-structures by molecular beam epitaxy and application to optical and electronic devices.

- **Fumitaro Ishikawa**
 - Exploration of new functional materials and structures based on compound semiconductor epitaxial growth.
<table>
<thead>
<tr>
<th>Communication Systems Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>The research activities cover the signal processing for high-density digital magnetic and optical recording systems, investigation of fundamental properties of subwavelength optical elements including holograms, media processing algorithms related to motion, neural networks applications to signal and image processing, sequence design and signal processing for baseband spread-spectrum communications.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shinji Tsuzuki</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Research on sequence design and signal processing for baseband spread-spectrum communications, and its application to power-line communication</td>
</tr>
<tr>
<td>(2) Analysis of CDMA based protocols</td>
</tr>
<tr>
<td>(3) Developing high-definition video transmission systems over IP network</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yoshihiro Okamoto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research on channel coding and signal processing techniques to achieve high density recording in digital information storage systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yasuaki Nakamura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research on error correction coding and iterative decoding systems for information storage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hiroyuki Ichikawa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigation of fundamental properties of subwavelength optical elements including holography and their application and electromagnetic analysis of light wave propagation.</td>
</tr>
<tr>
<td>Course</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Computer Science</td>
</tr>
<tr>
<td>Artificial Intelligence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Staffs and Research Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shin-ya Kobayashi</td>
</tr>
<tr>
<td>Distributed processing, parallel processing and cooperative processing. Secure processing for distributed processing.</td>
</tr>
<tr>
<td>Hiroshi Takahashi</td>
</tr>
<tr>
<td>Design and Test of Computers, Dependable system design, Digital Systems Testing and Diagnosis, Design of Digital Systems using Hardware Description Language</td>
</tr>
<tr>
<td>Yoshinobu Higami</td>
</tr>
<tr>
<td>Design, Test and Diagnosis of VLSI Circuits: Test Pattern Generation, Design for Testability, CAD System for VLSI Design</td>
</tr>
<tr>
<td>Hiroshi Kai</td>
</tr>
<tr>
<td>Researches on systems and algorithms of Computer Algebra, especially symbolic-numeric hybrid computations, middleware and network security.</td>
</tr>
<tr>
<td>※※※Yoshio Yanagihara</td>
</tr>
<tr>
<td>Time-sequenced 3-D image processing, GPU computing, refactoring, GUI and virtual reality.</td>
</tr>
<tr>
<td>Takashi Ninomiya</td>
</tr>
<tr>
<td>Toshiyuki Uto</td>
</tr>
<tr>
<td>Multimedia Signal Processing: image compression, wavelets, filter banks, and 3-D graphics processing</td>
</tr>
</tbody>
</table>
1. **Applied Computer Science**
 - Applied mathematics, and basic theory and algorithms of computations in science and engineering: partial differential equations, their numerical solutions and numerical conformal mappings.
 - Information network and data processing for science and engineering. Applications of information network, software technique, distributed database.
 - Cognitive science: pattern cognition, human information processing.
 - Applications of multimedia information, contents production, coding, processing and service systems.

<table>
<thead>
<tr>
<th>Name</th>
<th>Research Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hiroshi Ito</td>
<td>Mathematical Physics: Mathematical scattering theory, Inverse scattering problem</td>
</tr>
<tr>
<td>Minoru Kawahara</td>
<td>Informatics: information networks, information and communication system, data mining, information and communication supports.</td>
</tr>
<tr>
<td>Kazuto Noguchi</td>
<td>Optical communication systems and applications: optical devices, optical transmission systems, telemedicine.</td>
</tr>
<tr>
<td>Hirohisa Aman</td>
<td>Empirical software engineering: software quality quantification using software metrics, and statistical model for quality assessment/prediction.</td>
</tr>
<tr>
<td>Kazunori Ando</td>
<td>Mathematical Physics: Scattering theory and inverse scattering problems for discrete Schrödinger operators on graphs</td>
</tr>
<tr>
<td>Hisayasu Kuroda</td>
<td>High performance Computing: Development of high performance numerical library, large-scale numerical simulation on multiprocessors.</td>
</tr>
</tbody>
</table>

※※※Scheduled to retire in March, 2022
<table>
<thead>
<tr>
<th>Course Field</th>
<th>Research outline</th>
<th>Staffs and Research Fields</th>
</tr>
</thead>
</table>
| Mathematics | We research on various aspects of mathematical sciences. Main subjects are algebra such as number theory and representation theory, theory of topological groups and topological spaces, geometry of discrete groups, dynamical systems, theory of differential equations, probability theory with applications to finance, applied mathematics such as numerical analysis, time series analysis, parallel processes and pattern recognition. | Dmitri B. Shakhmatov
Investigation of topological structure of topological groups and fields
Takuya Tsuchiya
Numerical analysis for elliptic partial differential equations
Miki Hirano
Number Theory
(Automorphic Forms, Automorphic Representations, and their L-functions)
Yuki Naito
Studies on nonlinear partial differential equations
Masaya Matsuura
Time series analysis
Yasushi Ishikawa
Probability and stochastic analysis
Yoshinori Yamasaki
Analytic number theory
Takanitsu Yamauchi
General Topology
Shin-ichi Oguni
Noncommutative geometry and geometric group theory
Norisuke Ioku
Partial differential equations and functional inequalities |
<table>
<thead>
<tr>
<th>Course Field</th>
<th>Research outline</th>
<th>Staffs and Research Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>Theoretical and experimental researches on fundamental problems in physics are performed. The following branches are covered in the activities: foundations of quantum theory, quantum field theory, gauge theories, investigations of the structure and the evolution of the universe theoretically and by the observation of X-rays, visible radiation.</td>
<td>Hiroto So</td>
</tr>
<tr>
<td>Fundamental Physics</td>
<td>Challenge for particle physics, by field theory, lattice gauge theory, higher-dimensional theory, supersymmetry and high power computers.</td>
<td>Hisamitsu Awaki</td>
</tr>
<tr>
<td></td>
<td>Study of structure and evolution of the Universe. In particular, study of active Universe through cosmic X-ray emission, and development of instruments for X-ray observatory.</td>
<td>Yuichi Terashima</td>
</tr>
<tr>
<td>Condensed Matter and Plasma Physics</td>
<td>Various phenomena concerning condensed matters are studied theoretically and experimentally. Special interests are taken in (1) dynamical theory of phase transition and pattern formation in nonequilibrium open systems, (2) theoretical study of self-assemblies in solution, (3) theoretical study of strongly correlated electron systems, (4) experimental studies of magnetic, thermoelectric and optical materials, and (5) plasma physics in liquid.</td>
<td>Tohru Nagao</td>
</tr>
<tr>
<td></td>
<td>Observational studies on the formation and evolution of galaxies and supermassive black holes. Studies on the chemical evolution of the Universe.</td>
<td>Masaru Kajisawa</td>
</tr>
<tr>
<td></td>
<td>Observational studies of galaxy formation and evolution. History of star formation and mass assembly of galaxies.</td>
<td>Yoshiki Matsuoka</td>
</tr>
<tr>
<td></td>
<td>Observational research on the evolution of galaxies, supermassive black holes, and the Universe.</td>
<td>Kazuhiro Fuchizaki</td>
</tr>
<tr>
<td></td>
<td>Theoretical treatment on chemical physics of phase equilibria and relaxation kinetics.</td>
<td>Tsunehiro Maehara</td>
</tr>
<tr>
<td></td>
<td>Experimental study of plasma in liquid.</td>
<td>Tohru Shimizu</td>
</tr>
<tr>
<td></td>
<td>Space plasma physics, fast magnetic reconnection based on MHD and kinetic theory and numerical studies.</td>
<td>Masaaki Nakamura</td>
</tr>
<tr>
<td>Course</td>
<td>Field</td>
<td>Research outline</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Earth Sciences</td>
<td>Earth’s Evolution and Environment</td>
<td>The main research subjects of this division are to elucidate the history and the law of changes and evolution of the Earth, and to analyze the dynamic properties of the Earth. Our current interests concern the structural and evolitional process of the Earth, evolution of vertebrate animals, crustal movements, the petrologic and tectonic structures of the island arc mobile belt, the crust-mantle interactions, the environmental changes of the Earth, the physical and dynamic properties of the deepearth materials, and ocean fluctuation.</td>
</tr>
</tbody>
</table>

※ Scheduled to retire in March, 2020
<table>
<thead>
<tr>
<th>Course Field</th>
<th>Research outline</th>
<th>Staffs and Research Fields</th>
</tr>
</thead>
</table>
| Molecular Science | Elementary steps in physical processes and chemical reactions in many substance systems, such as dissociation, ionization, association, and so on, are investigated under various conditions, that is, at very low temperature, at high pressure, and upon photoexcitation. Profiles and interactions of the reaction products, electrons, ions, atoms, radicals, and crystals, are analyzed at the atomic and molecular levels. Based on these researches on fundamental chemistry, synthesis of new functional materials are conducted. | Ryoji Takahashi
Synthesis of novel porous metal oxides and design of their functionalities in adsorption and catalysis
Shin-ichi Nagaoka
Properties of excited molecules. Interaction between light and molecules.
Hisako Sato
Studies on the functionalization of chiral metal complexes
Toshio Naito
Physical properties of low-dimensional solids and their novel functions
Keishi Ohara
Properties, reaction processes, and spin-dynamics of excited state molecules and short-lived radicals
Takashi Yamamoto
Studies on the interactions in molecular functional solids |
| Functional Material Science | The research projects in this division are aiming to understand the natural phenomena in molecular level, particularly the functions of organic and biological materials, by the collaboration of researchers in the fields of organic chemistry, biochemistry, analytical chemistry, and environmental chemistry. Some examples of the present research projects are: structural studies and creation of functional molecular materials, synthesis of functional organic materials, development of new analytical method of proteins, synthesis of artificial receptors for the signal transduction in organisms, synthesis of artificial metalloenzymes, analysis of the mechanism of biological adaptation to environment, and chemical analysis of trace substances in organisms. | Hidemitsu Uno
Synthesis of bioactive compounds and highly functional materials of organic dyes.
Tatsuya Kunisue
Development of analytical methods for novel environmental contaminants with hormone-like activity and its application to ecotoxicology
Tamotsu Zako
Nano analysis of molecular properties and functions of proteins
Yoji Shimazaki
Comprehensive analysis of the activity and structure of biological enzymes
Miwa Sugiura
Studies on the molecular structure and function of Photosystem II
Makoto Kuramoto
Isolation and structural elucidation of bioactive compounds from marine organisms.
Tetsuo Okujima
Synthesis and properties of conjugation-expanded porphyrins and phthalocyanines aimed for the creation of functional materials
Masayoshi Takase
Synthesis and characterization of novel π-electron systems
Kei Nomiya
Metabolic disposition and risk assessment of organohalogen compounds in wildlife
Atsushi Ogawa
Development of new biotechnologies based on cell-free systems |
<table>
<thead>
<tr>
<th>Course</th>
<th>Field</th>
<th>Research outline</th>
<th>Staffs and Research Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology and Environmental Science</td>
<td>Sciences of Biological Functions</td>
<td>Aiming at the comprehensive understanding of biological phenomena, we are trying to analyze a variety of structures and functions of living organisms at the molecular and cellular levels. Researches are focused especially on morphogenesis of plant cells and organs, adaptive responses of plants to environments, early development of animal embryos, evolution of brain morphology in vertebrates, and neural basis of animal behavior.</td>
<td>※※※ Masahiro Inouhe Growth, adaptation, metabolisms and phytohormone actions in plants. Yasunori Murakami Evolution of the vertebrate brain: comparative and developmental analysis. Yasushi Sato Cell differentiation, morphogenesis, and environmental responses in higher plants. Yoh Sakuma Molecular response of higher plant to water and temperature stress. Koji Omori Hiromi Takata Morphogenesis and organogenesis of echinoderm embryos during early development.</td>
</tr>
<tr>
<td>Ecology and Environmental Science</td>
<td></td>
<td>The major purposes of researches in this division are to analyze the interactions between living organisms and environments, and to elucidate the dynamic changes in the biosphere. The research field includes the following themes: inter-specific or intra-specific interactions between aquatic organisms, ecology and evolution of microorganisms, material cycle in the aquatic ecosystem, and toxicity of chemical pollutants to organisms.</td>
<td>Hisato Iwata Ecotoxicology of wildlife and species-diversity of disruption of cellular signaling pathway by environmental chemicals ※ Koji Omori Analysis of material cycle and energy flow of aquatic ecosystems including fluvial, estuary, and coastal marine ecosystems. Toshiyuki Nakajima Experimental analysis of relationships between evolutionary processes and ecological interactions using microbial model eco-systems. Mikio Inose Analysis of habitat structure and biotic interactions in stream communities. Shin-ichi Kitamura Outbreak mechanisms of fish infectious diseases by marine environmental changes Hiroki Hata Ecology of marine organisms, especially on species interaction and coevolution</td>
</tr>
</tbody>
</table>

※Scheduled to retire in March, 2020, ※※Scheduled to retire in March, 2021 ※※※Scheduled to retire in March, 2022
<table>
<thead>
<tr>
<th>Field: Environmental Sciences</th>
<th>Staffs and Research Fields:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Graduate Course on Advanced Sciences</td>
<td></td>
</tr>
<tr>
<td>Field Research outline</td>
<td>Ainyu Guo</td>
</tr>
<tr>
<td>This division conducts, on the basis of physics, chemistry and biology and their interdisciplinary field, cutting-edge studies on the structure and variation mechanisms of the environment and ecosystems in coastal waters and their related environmental issues, and pollution and toxic effects of hazardous chemicals on a regional and a global scale. Students can mainly study environmental dynamics, environmental chemistry and environmental biology.</td>
<td>Shimulation of the Kuroshio, Interaction of the Kuroshio and coastal water, Marine environmental prediction of Seto Inland Sea.</td>
</tr>
<tr>
<td>Students on variability in ocean currents using remote sensing and hydrographic observation, and material cycle in coastal sea.</td>
<td>Akihiko Morimoto</td>
</tr>
<tr>
<td>Long-term variability of ocean-atmosphere-ecosystem : regime shift and fisheries productivity dynamics. Late Holocene climate dynamics on centennial timescales in the North Pacific. Impacts of transboundary pollution and global warming on marine and lake ecosystems.</td>
<td>Michinobu Kusue</td>
</tr>
<tr>
<td>Ecotoxicology of wildlife and species-diversity of disruption of cellular signaling pathway by environmental chemicals.</td>
<td>Hisato Iwata</td>
</tr>
<tr>
<td>Development of analytical methods for novel environmental contaminants with hormone-like activity and its application to ecotoxicology</td>
<td>Tatsuya Kaninoue</td>
</tr>
<tr>
<td>Metabolic disposition and risk assessment of organohalogen compounds in wildlife.</td>
<td>Kei Nomiya</td>
</tr>
<tr>
<td>Analysis of material cycle and energy flow of aquatic ecosystems including fluvial, estuary, and coastal marine ecosystems.</td>
<td>Koji Oomori</td>
</tr>
<tr>
<td>Outbreak mechanisms of fish infectious diseases by marine environmental changes</td>
<td>Shin-ichi Kitamura</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field: Earth Science and Astrophysics</th>
<th>Staffs and Research Fields:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Sciences</td>
<td></td>
</tr>
<tr>
<td>This division aims to nurture the researchers who have advanced knowledge and research competency through the studies on the structure and dynamics of the Earth, planets, and universe in GRC and RSCE. The division consists of four terrains of high-pressure mineralogy, theory of Earth and planetary materials, galaxy evolution, and X-ray astrophysics.</td>
<td></td>
</tr>
<tr>
<td>Development of high-pressure technology and its application to the internal structure of the Earth.</td>
<td>Tetsuo Irifune</td>
</tr>
<tr>
<td>Theoretical and computational study of minerals and modeling the Earth and planetary interiors.</td>
<td>Taku Tsuchiya</td>
</tr>
<tr>
<td>Study of structure and evolution of the Universe. In particular, study of active Universe through cosmic X-ray emission, and development of instruments for X-ray observatory.</td>
<td>Hisamitsu Awaki</td>
</tr>
<tr>
<td>Study of high energy phenomena in the Universe. In particular, observational study of black holes and the structure and evolution of the Universe.</td>
<td>Yuichi Terashima</td>
</tr>
<tr>
<td>Observational studies on the formation and evolution of galaxies and supermassive black holes. Studies on the chemical evolution of the Universe.</td>
<td>Tohru Nagao</td>
</tr>
<tr>
<td>Mantle Dynamics : Studies on flows, deformations, and evolutions of the Earth's interior based on the computational fluid dynamics.</td>
<td>Masanori Kameyama</td>
</tr>
<tr>
<td>Experimental study on the phase transition, crystallization, self-organization of minerals.</td>
<td>Hiroaki Ohfuji</td>
</tr>
<tr>
<td>Experimental study on transport properties (such as rheology) of deep Earth materials.</td>
<td>Yu Nishihara</td>
</tr>
<tr>
<td>Computational study of the existence and its effects of volatile elements in the Earth's interior.</td>
<td>Jun Tsuchiya</td>
</tr>
<tr>
<td>Space plasma physics, fast magnetic reconnection based on MHD and kinetic theory and numerical studies.</td>
<td>Tohru Shimizu</td>
</tr>
<tr>
<td>Observational studies of galaxy formation and evolution. History of star formation and mass assembly of galaxies.</td>
<td>Masaru Kajisawa</td>
</tr>
<tr>
<td>Observational research on the evolution of galaxies, supermassive black holes, and the Universe.</td>
<td>Yoshiki Matsuoka</td>
</tr>
</tbody>
</table>
This division provides education programs focusing on protein sciences, and has four main lecture contents that are grappled with in Proteo-Science Center: infectious molecular science, photo-life science, molecular life science, and protein function science.

Malaria vaccine development
Takafumi Tsuboi

Structures and functions of nucleic acids and proteins related to expression of genetic information
Hiroyuki Hori

Development of new method for polymer synthesis
Eiji Ihara

Reconstitution of protein synthesis
Kazuyuki Takai

Synthesis of bioactive compounds and highly functional materials of organic dyes.
Hidemitsu Uno

Functional proteomics using wheat cell-free system
Tatsuya Sawasaki

Studies on the molecular structure and function of Photosystem II
Miwa Sugiura

Development of new biotechnologies based on cell-free systems
Atsushi Ogawa

※Scheduled to retire in March, 2020