世界初の研究成果！
妊娠中マグネシウム摂取が幼児の多動問題に予防的論文発表

愛媛大学が主導する共同研究チーム（東京大学、琉球大学）が、妊娠中のマグネシウム摂取が生まれた子の多動問題に予防的であることを示す研究成果を世界で初めて発表し、令和3年2月11日に学術誌「Nutritional Neuroscience」の電子版に公表されました。

マグネシウムは脳組織の発達や機能に重要な役割を果たしている可能性があります。これまで妊娠中の亜鉛、マグネシウム、鉄、銅、マンガン摂取と生まれた子の行動的問題との関連を調べた疫学研究はありません。

今回、妊娠中から母親と生まれた子を追跡調査した「九州・沖縄母子保健研究」のデータを活用し、妊娠中のメタル摂取と子の5歳時における行動的問題との関連を調べました。その結果、妊娠中のマグネシウム摂取は5歳児における多動問題のリスク低下と関連を認めた。

今後、更なる研究データの蓄積が必要となりますが、妊娠中の食習慣の変容により、子供の行動的問題を予防できる可能性を示す非常に関心の高い研究成果であるといえます。

つきましては、是非、取材くださいますようお願いいたします。

記

掲載誌：Nutritional Neuroscience
DOI：10.1080/1028415X.2021.1885241
題名：Maternal metal intake during pregnancy and childhood behavioral problems in Japan: the Kyushu Okinawa Maternal and Child Health Study
著者：Yoshihiro Miyak, Keiko Tanaka, Hitomi Okubo, Satoshi Sasaki, Akiko Tokinobu, Masashi Arakawa
責任著者：三宅吉博（愛媛大学）

本件に関する問い合わせ先
愛媛大学大学院医学系研究科
疫学・予防医学講座
教授　三宅 吉博
Tel：089-960-5283
Mail：miyake.yoshihiro.ls@ehime-u.ac.jp

※送付資料5枚（本紙を含む）
九州・沖縄母子保健研究
妊娠中マグネシウム等メタル摂取と生まれた子の行動的問題リスクとの関連

背景：マグネシウムは脳組織の発達や機能に重要な役割を果たしている可能性があります。妊娠中の母親のマグネシウムの摂取が少なければ、生まれた子の発達に影響するかもしれません。これまで妊娠中の亜鉛、マグネシウム、鉄、銅、マンガン摂取と生まれた子の行動的問題との関連を調べた疫学研究はありません。

方法：九州・沖縄母子保健研究に参加した1199組の母子を対象としました。妊娠中に食事歴法質問調査票を用いて妊娠の栄養データを得ました。5歳時追跡調査で保護者にStrengths and Difficulties Questionnaire（SDQ: 子どもの強さと困難さアンケート）の親評定フォームに回答頂きました。2008年の久留米大学の報告に基づき、境界水準あるいは臨床水準にある場合、情緒問題、行為問題、多動問題、仲間関係問題及び低い向社会的行動が認められると定義しました。正常水準の子供を基準とし、境界水準あるいは臨床水準の子供の補正オッズ比を算出しました。非栄養要因としてベースライン調査時の母親の年齢、妊娠週、居住地、子数、両親の教育歴、家計の年収、妊娠中の母親のうつ症状、妊娠中の母親のアルコール摂取、妊娠中の母親の喫煙、その出生体重、性別、母乳摂取期間及び生後1年間の受動喫煙を交絡要因として補正しました。また栄養要因の交絡因子として、情緒問題ではビタミンB2とカルシウム、多動問題ではビタミンC、ビタミンB6、カルシウム、低い向社会的行動ではビタミンC、葉酸、ビタミンB6も考慮しました。

結果：1199名の5歳児において情緒問題、行為問題、多動問題、仲間関係問題及び低い向社会的行動は、各々、子の12.9%、19.4%、13.1%、8.6%、29.2%に認められました。妊娠中のマグネシウム摂取は統計学的に有意に5歳児における多動問題のリスク低下と関連を認めました。一方で、マグネシウム摂取は情緒問題、行為問題、仲間関係問題、低い向社会的行動とは関連を認めませんでした。妊娠中の亜鉛、鉄、銅、マンガン摂取は情緒問題、行為問題、多動問題、仲間関係問題、低い向社会的行動とも関連がありませんでした。

結論：妊娠中のマグネシウム摂取が生まれた子の行動的問題に予防的なのかもしれません。

表. 妊娠中亜鉛、マグネシウム、鉄、銅、マンガン摂取と生まれた子の行動的問題との関連

<table>
<thead>
<tr>
<th>摂取</th>
<th>情緒問題</th>
<th>行為問題</th>
<th>多動問題</th>
<th>仲間関係問題</th>
<th>低い向社会的行動</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>累積罹患率 (%)</td>
<td>補正 OR (95% CI)</td>
<td>累積罹患率 (%)</td>
<td>補正 OR (95% CI)</td>
<td>累積罹患率 (%)</td>
</tr>
<tr>
<td>Q1 (6.2)</td>
<td>18.4</td>
<td>1.00</td>
<td>22.4</td>
<td>1.00</td>
<td>15.4</td>
</tr>
<tr>
<td>Q2 (6.9)</td>
<td>12.0</td>
<td>0.67</td>
<td>21.0</td>
<td>1.06</td>
<td>12.0</td>
</tr>
<tr>
<td>Q3 (7.4)</td>
<td>10.7</td>
<td>0.60</td>
<td>15.3</td>
<td>0.75</td>
<td>12.3</td>
</tr>
<tr>
<td>Q4 (8.2)</td>
<td>10.7</td>
<td>0.67</td>
<td>19.0</td>
<td>1.08</td>
<td>12.7</td>
</tr>
<tr>
<td>傾向性 P 値</td>
<td>0.11</td>
<td>0.85</td>
<td>0.42</td>
<td>0.65</td>
<td>0.17</td>
</tr>
<tr>
<td>Q1 (173.0)</td>
<td>15.1</td>
<td>1.00</td>
<td>24.4</td>
<td>1.00</td>
<td>19.4</td>
</tr>
<tr>
<td>Q2 (200.3)</td>
<td>12.0</td>
<td>0.94</td>
<td>16.7</td>
<td>0.66</td>
<td>11.7</td>
</tr>
<tr>
<td>Q3 (225.1)</td>
<td>12.7</td>
<td>0.98</td>
<td>17.7</td>
<td>0.78</td>
<td>11.0</td>
</tr>
<tr>
<td>Q4 (266.8)</td>
<td>12.0</td>
<td>1.23</td>
<td>19.0</td>
<td>0.91</td>
<td>10.3</td>
</tr>
<tr>
<td>傾向性 P 値</td>
<td>0.49</td>
<td>0.77</td>
<td>0.04</td>
<td>0.01</td>
<td>0.92</td>
</tr>
<tr>
<td>Q1 (5.2)</td>
<td>15.1</td>
<td>1.00</td>
<td>20.7</td>
<td>1.00</td>
<td>17.7</td>
</tr>
<tr>
<td>Q2 (6.2)</td>
<td>11.0</td>
<td>0.89</td>
<td>18.3</td>
<td>0.92</td>
<td>14.7</td>
</tr>
<tr>
<td>Q3 (6.9)</td>
<td>14.3</td>
<td>1.23</td>
<td>20.7</td>
<td>1.06</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>Q4 (8.2)</td>
<td>11.3</td>
<td>1.06</td>
<td>18.0</td>
<td>1.02</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.73–2.08)</td>
<td>(0.70–1.59)</td>
<td>(0.31–0.93)</td>
<td>(0.60–1.77)</td>
</tr>
<tr>
<td>傾向性P値</td>
<td></td>
<td>0.58</td>
<td>0.77</td>
<td>0.09</td>
<td>0.50</td>
</tr>
<tr>
<td>銅 (四分位)</td>
<td>Q1 (0.9)</td>
<td>15.7</td>
<td>1.00</td>
<td>22.7</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Q2 (1.0)</td>
<td>11.7</td>
<td>0.85</td>
<td>17.0</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>Q3 (1.1)</td>
<td>12.7</td>
<td>0.90</td>
<td>19.3</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>Q4 (1.3)</td>
<td>11.7</td>
<td>0.90</td>
<td>18.7</td>
<td>0.95</td>
</tr>
<tr>
<td>傾向性P値</td>
<td></td>
<td>0.74</td>
<td>0.96</td>
<td>0.11</td>
<td>0.28</td>
</tr>
<tr>
<td>マンガン (四分位)</td>
<td>Q1 (2.4)</td>
<td>13.7</td>
<td>1.00</td>
<td>19.4</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Q2 (3.2)</td>
<td>14.7</td>
<td>1.16</td>
<td>19.0</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>Q3 (4.0)</td>
<td>13.3</td>
<td>1.03</td>
<td>22.0</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td>Q4 (5.2)</td>
<td>10.0</td>
<td>0.76</td>
<td>17.3</td>
<td>0.86</td>
</tr>
<tr>
<td>傾向性P値</td>
<td></td>
<td>0.39</td>
<td>0.83</td>
<td>0.52</td>
<td>0.41</td>
</tr>
</tbody>
</table>

OR: odds ratio（オッズ比）；CI: confidence interval（信頼区間）
a摂取量/日(中央値)：mg/日

bベースライン調査時の母親の年齢、妊娠週、居住地、子数、両親の教育歴、家計の年収、妊娠中の母親のうつ症状、妊娠中の母親のアルコール摂取、妊娠中の母親の喫煙、子の出生体重、性別、母乳摂取期間、生後1年間の受動喫煙、ビタミンB2とカルシウムを補正

cベースライン調査時の母親の年齢、妊娠週、居住地、子数、両親の教育歴、家計の年収、妊娠中の母親のうつ症状、妊娠中の母親のアルコール摂取、妊娠中の母親の喫煙、子の出生体重、性別、母乳摂取期間、生後1年間の受動喫煙を補正

dベースライン調査時の母親の年齢、妊娠週、居住地、子数、両親の教育歴、家計の年収、妊娠中の母親のうつ症状、妊娠中の母親のアルコール摂取、妊娠中の母親の喫煙、子の出生体重、性別、母乳摂取期間、生後1年間の受動喫煙、ビタミンC、ビタミンB6、カルシウムを補正

eベースライン調査時の母親の年齢、妊娠週、居住地、子数、両親の教育歴、家計の年収、妊娠中の母親のうつ症状、妊娠中の母親のアルコール摂取、妊娠中の母親の喫煙、子の出生体重、性別、母乳摂取期間、生後1年間の受動喫煙、ビタミンC、葉酸、ビタミンB6を補正